1,671 research outputs found

    Population-inversion and gain estimates for a semiconductor TASER

    Get PDF
    We have investigated a solid-state design advanced (see Soref et al, in SPIE Proceedings, vol. 3795, p, 516, 1999) to achieve a terahertz-amplification-by-the-stimulated-emision-of-radiation (TASER), The original design was based on light-to heavy-hole intersubband transitions in SiGe/Si heterostructures, This work adapts the design to electron intersubband transitions in the more readily available GaAs/Ga1-xAlxAs material system. It is found that the electric-field induced anti-crossings of the states, derived from the first excited state with the ground states of a superlattice in the Stark-ladder regime, offers the possibility of a population inversion and gain at room temperature

    Responsivity of quantum well infrared photodetectors at terahertz detection wavelengths

    Get PDF
    A first-principles model of the photocurrent in quantum well infrared photodetectors (QWIPs) is derived. The model examines the responsivity, carrier capture probability and quantum efficiency. It is found that the QWIP sensitivity reaches a plateau below the 10 ¾m detection wavelength and remains nearly constant from 10 to 50 ¾m. Š 2002 American Institute of Physics

    Designing strain-balanced GaN/AlGaN quantum well structures: Application to intersubband devices at 1.3 and 1.55 mu m wavelengths

    Get PDF
    A criterion for strain balancing of wurtzite group-III nitride-based multilayer heterostructures is presented. Single and double strain-balanced GaN/AlGaN quantum well structures are considered with regard to their potential application in optoelectronic devices working at communication wavelengths. The results for realizable, strain-balanced structures are presented in the form of design diagrams that give both the intersubband transition energies and the dipole matrix elements in terms of the structural parameters. The optimal parameters for structures operating at lambda ~1.3 and 1.55 ¾m were extracted and a basic proposal is given for a three level intersubband laser system emitting at 1.55¾m and depopulating via resonant longitudinal optical(LO)phonons (h omega(LO)approximate to 90 meV). Š 2003 American Institute of Physics

    Roadmap for investment in the seed potato value chain in Eastern Africa

    Get PDF
    This roadmap describes the five-year strategy in five african countries (Ethiopia, Kenya, Rwanda, Tanzania and Uganda) to target business investments in key areas along the seed potato value chain to increase the availability of high-quality seed potatoes and promote improved seed management. The approaches presented in the rRoadmap are consistent with those laid out in USAID’s comprehensive Feed the Future initiative and are supportive of development themes and programs of other multilateral donors

    Examining Periodic Solar Wind Density Structures Observed in the SECCHI Heliospheric Imagers

    Full text link
    We present an analysis of small-scale, periodic, solar-wind density enhancements (length-scales as small as \approx 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence (2008) examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also non-turbulent periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper (2009) analyzed the {\alpha} to proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed.Comment: 15 pages, 12 figures. The final publication is available at http://www.springerlink.co

    Commission 10: Solar Activity

    Get PDF
    Commission 10 aims at the study of various forms of solar activity, including networks, plages, pores, spots, fibrils, surges, jets, filaments/prominences, coronal loops, flares, coronal mass ejections (CMEs), solar cycle, microflares, nanoflares, coronal heating etc., which are all manifestation of the interplay of magnetic fields and solar plasma. Increasingly important is the study of solar activities as sources of various disturbances in the interplanetary space and near-Earth “space weather”. Over the past three years a major component of research on the active Sun has involved data from the RHESSI spacecraft. This review starts with an update on current and planned solar observations from spacecraft. The discussion of solar flares gives emphasis to new results from RHESSI, along with updates on other aspects of flares. Recent progress on two theoretical concepts, magnetic reconnection and magnetic helicity is then summarized, followed by discussions of coronal loops and heating, the magnetic carpet and filaments. The final topic discussed is coronal mass ejections and space weather. The discussions on each topic is relatively brief, and intended as an outline to put the extensive list of references in context. The review was prepared jointly by the members of the Organizing Committee, and the names of the primary contributors to the various sections are indicated in parentheses

    Geomagnetic storm dependence on the solar flare class

    Full text link
    Content. Solar flares are often used as precursors of geomagnetic storms. In particular, Howard and Tappin (2005) recently published in A&A a dependence between X-ray class of solar flares and Ap and Dst indexes of geomagnetic storms which contradicts to early published results. Aims. We compare published results on flare-storm dependences and discuss possible sources of the discrepancy. Methods. We analyze following sources of difference: (1) different intervals of observations, (2) different statistics and (3) different methods of event identification and comparison. Results. Our analysis shows that magnitude of geomagnetic storms is likely to be independent on X-ray class of solar flares.Comment: 3 pages, 1 tabl

    Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation

    Full text link
    In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs having well-measured masses against 12,050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10-80 minutes afterward, and we further require the flare and CME to occur within +/-45 degrees in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log(CME mass)~0.70*log(flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic

    The link between galaxy and black hole growth in the eagle simulation

    Get PDF
    We investigate the connection between the star formation rate (SFR) of galaxies and their central black hole accretion rate (BHAR) using the EAGLE cosmological hydrodynamical simulation. We find, in striking concurrence with recent observational studies, that the 〈SFR〉–BHAR relation for an active galactic nucleus (AGN)-selected sample produces a relatively flat trend, whilst the 〈BHAR〉–SFR relation for an SFR-selected sample yields an approximately linear trend. These trends remain consistent with their instantaneous equivalents even when both SFR and BHAR are time averaged over a period of 100 Myr. There is no universal relationship between the two growth rates. Instead, SFR and BHAR evolve through distinct paths that depend strongly on the mass of the host dark matter halo. The galaxies hosted by haloes of mass M200 ≲ 1011.5 M⊙ grow steadily, yet black holes (BHs) in these systems hardly grow, yielding a lack of correlation between SFR and BHAR. As haloes grow through the mass range 1011.5 ≲ M200 ≲ 1012.5 M⊙ BHs undergo a rapid phase of non-linear growth. These systems yield a highly non-linear correlation between the SFR and BHAR, which are non-causally connected via the mass of the host halo. In massive haloes (M200 ≳ 1012.5 M⊙), both SFR and BHAR decline on average with a roughly constant scaling of SFR/BHAR ∼ 103. Given the complexity of the full SFR–BHAR plane built from multiple behaviours, and from the large dynamic range of BHARs, we find the primary driver of the different observed trends in the 〈SFR〉–BHAR and 〈BHAR〉–SFR relationships are due to sampling considerably different regions of this plane

    Magnetic field diagnostics and spatio-temporal variability of the solar transition region

    Full text link
    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme UV spectro-polarimetry. While for coronal diagnostic techniques already exist through infrared coronagraphy above the limb and radio observations on the disk, for the transition region one has to investigate extreme UV observations. However, so far the success of such observations has been limited, but there are various projects to get spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect for such observations through realistic forward modeling. We employ a 3D MHD forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C IV 1548 A. A signal well above 0.001 in Stokes V can be expected, even when integrating for several minutes in order to reach the required signal-to-noise ratio, despite the fact that the intensity in the model is rapidly changing (just as in observations). Often this variability of the intensity is used as an argument against transition region magnetic diagnostics which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and thus when integrating in time the degree of (circular) polarization remains rather constant. Our study shows the feasibility to measure the transition region magnetic field, if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.Comment: Accepted for publication in Solar Physics (4.Mar.2013), 19 pages, 9 figure
    • …
    corecore